-

Mitsubishi Electric to Ship Samples of SiC-MOSFET Bare Die for xEVs

Standardized power-semiconductor chip will extend driving range and lower power costs for xEVs

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it will begin shipping samples of a silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) bare die for use in drive-motor inverters of electric vehicles (EVs), plug-in hybrid vehicles (PHEVs) and other electric vehicles (xEVs) on November 14. Mitsubishi Electric’s first standard-specification SiC-MOSFET power semiconductor chip will enable the company to respond to the diversification of inverters for xEVs and contribute to the growing popularity of these vehicles. The new SiC-MOSFET bare die for xEVs combines a proprietary chip structure and manufacturing technologies to contribute to decarbonization by enhancing inverter performance, extending driving range and improving energy efficiency in xEVs.

Mitsubishi Electric’s new power semiconductor chip is a proprietary trench SiC-MOSFET that reduces power loss by about 50% compared to conventional planar SiC-MOSFETs. Thanks to proprietary manufacturing technologies, such as a gate oxide film process that suppresses fluctuations in power loss and on-resistance, the new chip achieves long-term stability to contribute to inverter durability and xEV performance.

Product Features

1) Proprietary trench SiC-MOSFET extends driving range and lowers power costs for xEVs

- Advanced miniaturization technology, cultivated in Mitsubishi Electric’s manufacture of Si power semiconductor chips, helps reduce on-resistance compared to conventional planar SiC-MOSFETs.
- Oblique ion implantation instead of conventional vertical ion implantation reduces switching loss.
- Power loss is reduced by about 50% compared to conventional planar SiC-MOSFETs, resulting in improved inverter performance, extended driving range and reduced power costs for xEVs.

For the full text, please visit: www.MitsubishiElectric.com/news/

Contacts

Customer Inquiries
Semiconductor & Device Marketing Dept. A and Dept. B
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/semiconductors/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2332
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

Mitsubishi Electric Corporation

TOKYO:6503

Release Versions

Contacts

Customer Inquiries
Semiconductor & Device Marketing Dept. A and Dept. B
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/semiconductors/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2332
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

More News From Mitsubishi Electric Corporation

Mitsubishi Electric to Strengthen Global Human Resources Allocation and Development with Talent Mobility and G-OJT Systems

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it will launch the Talent Mobility System to match employees with jobs in the company’s global group in order to develop, mobilize and engage top talent. It will also revise the Global- On the Job Training (G-OJT) System to provide young employees with deeper overseas work experiences compared to those of conventional overseas temporary-training programs. Mitsubishi Electric, which employs approximately 1...

Mitsubishi Electric to Ship Samples of Four New Trench SiC-MOSFET Bare Dies for Power Semiconductors

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that, beginning January 21, it will start shipping samples of four new trench silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) bare dies (chips not encased in protective housing) designed for use in power electronics equipment, such as electric vehicle (EV) traction inverters, onboard chargers, and power supply systems for renewable energy sources including solar power. These new...

Mechanism of Hydrogen-driven Free-electron Generation in Silicon Elucidated for First Time Ever

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation, Institute of Science Tokyo, University of Tsukuba, and Quemix Corporation announced today that they have achieved the world’s first elucidation of how hydrogen produces free electrons through the interaction with certain defects in silicon. The achievement has the potential to improve how insulated gate bipolar transistors (IGBTs) are designed and manufactured, making them more efficient and reducing their power loss. It is also expected...
Back to Newsroom