-

Mitsubishi Electric Successfully Demonstrates Light Source Module for High-capacity Laser Optical Communication in Outer Space

Quick, low-cost demonstration uses nanosatellite developed through industry-academia collaboration

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO:6503) announced today that it has successfully demonstrated laser optical frequency control using a new light source module, a key component of an envisioned high-capacity laser optical communication network to be deployed in outer space. The module, which produces a 1.5-µm wavelength signal, was installed in the OPTIMAL-1 nanosatellite developed through an industry-academia collaboration and released from the International Space Station (ISS) on January 6. The use of a nanosatellite enabled the demonstration to be carried out faster and at lower cost than using a conventional large satellite.

Mitsubishi Electric has been developing space-based optical technologies that are expected to increase data capacity (by ten times or more) as well as communication speeds and distances compared to systems that use radio waves.

Satellite images are increasingly being used for purposes such as assessing conditions in post-disaster areas and the state of remote forestry resources. Existing radio-wave satellite communication systems are limited in terms of capacity, speed and distance, so new optical systems offering improved communications capabilities are required for faster and higher-resolution assessments from space. Advanced systems that use laser signals are expected to be increasingly adopted not only for their superior communications capabilities but also for using wavelengths shorter than radio waves, which allows the use of relatively small and easily installed terrestrial antennas.

For the full text, please visit: www.MitsubishiElectric.com/news/

Contacts

Customer Inquiries
Information Technology R&D Center
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/ssl/contact/company/rd/form.html

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

Mitsubishi Electric Corporation

TOKYO:6503

Release Versions

Contacts

Customer Inquiries
Information Technology R&D Center
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/ssl/contact/company/rd/form.html

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

More News From Mitsubishi Electric Corporation

Mitsubishi Electric Completes Full Acquisition of Nozomi Networks

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today the completion of its acquisition of all outstanding shares of Nozomi Networks Inc., following the announcement on September 9, 2025 regarding its plan to make Nozomi a wholly-owned subsidiary. Overview of the Subsidiary Being Transferred Name Nozomi Networks Inc. Location Suite 3650, 575 Market St, San Francisco CA 94105 President & CEO Edgard Capdevielle Description of business Development and sales of O...

Mitsubishi Electric’s ME Innovation Fund Invests in Lucend, U.S. Startup Driving Data Center Operational Optimization

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that its ME Innovation Fund has invested in Lucend, a U.S.-based startup that provides an AI platform to optimize data center operations. This is the fund’s fourteenth investment to date. The rapid advancement of digitalization, including the widespread adoption of generative AI, has accelerated capital investment in data centers worldwide. Meanwhile, data center operators are being increasingly required to en...

Mitsubishi Electric Confirms World’s First Self-recovery Property of Highly Oriented Pyrolytic Graphite

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it has confirmed the world’s first self-recovery property of highly oriented pyrolytic graphite (HOPG), a van der Waals (vdW)-layered material, in joint research with the Solid Mechanics Laboratory (Hirakata Laboratory) of Kyoto University's Graduate School of Engineering. This achievement is expected to extend the operational lifetime of micro electro mechanical systems (MEMS) by utilizing vdW-layered ma...
Back to Newsroom