-

Mitsubishi Electric to Ship Samples of NX-type Full-SiC Power Semiconductor Modules for Industrial Equipment

Will contribute to more efficient, smaller and lighter industrial equipment by reducing internal inductance and incorporating an SiC chip

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it will begin shipping samples of its new NX-type full-SiC (silicon carbide) power semiconductor module for industrial equipment on June 14. The module, which reduces internal inductance and incorporates a second-generation SiC chip, is expected to contribute to the realization of more efficient, smaller and lighter-weight industrial equipment.

Power semiconductors are increasingly being utilized to convert electric power extra efficiently and thereby help to lower the carbon footprint of global society. Expectations are particularly high for SiC power semiconductors because of their capability to significantly reduce power loss. The demand is expanding for high-power, high-efficiency power semiconductors capable of improving the power-conversion efficiency of components such as inverters used in industrial equipment.

Mitsubishi Electric began releasing power semiconductor modules equipped with SiC chips in 2010. The new module, which features a low-loss SiC chip and optimized electrode structure, reduces internal inductance by 47% compared to its existing predecessor, enabling reduced power loss.

Development of this SiC product have been partially supported by Japan’s New Energy and Industrial Technology Development Organization (NEDO).

Product Features

1) Optimized electrode structure and SiC chip contribute to more efficient, smaller and lighter equipment

  • Electrode structure optimized with laminated electrodes, etc. to achieve internal inductance of 9nH, 47% lower than that of the existing module.

For the full text, please visit: www.MitsubishiElectric.com/news/

Contacts

Customer Inquiries
Semiconductor & Device Marketing Dept.A and Dept.B
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/semiconductors/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

Mitsubishi Electric Corporation

TOKYO:6503

Release Versions

Contacts

Customer Inquiries
Semiconductor & Device Marketing Dept.A and Dept.B
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/semiconductors/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

More News From Mitsubishi Electric Corporation

Mitsubishi Electric Completes Full Acquisition of Nozomi Networks

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today the completion of its acquisition of all outstanding shares of Nozomi Networks Inc., following the announcement on September 9, 2025 regarding its plan to make Nozomi a wholly-owned subsidiary. Overview of the Subsidiary Being Transferred Name Nozomi Networks Inc. Location Suite 3650, 575 Market St, San Francisco CA 94105 President & CEO Edgard Capdevielle Description of business Development and sales of O...

Mitsubishi Electric’s ME Innovation Fund Invests in Lucend, U.S. Startup Driving Data Center Operational Optimization

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that its ME Innovation Fund has invested in Lucend, a U.S.-based startup that provides an AI platform to optimize data center operations. This is the fund’s fourteenth investment to date. The rapid advancement of digitalization, including the widespread adoption of generative AI, has accelerated capital investment in data centers worldwide. Meanwhile, data center operators are being increasingly required to en...

Mitsubishi Electric Confirms World’s First Self-recovery Property of Highly Oriented Pyrolytic Graphite

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it has confirmed the world’s first self-recovery property of highly oriented pyrolytic graphite (HOPG), a van der Waals (vdW)-layered material, in joint research with the Solid Mechanics Laboratory (Hirakata Laboratory) of Kyoto University's Graduate School of Engineering. This achievement is expected to extend the operational lifetime of micro electro mechanical systems (MEMS) by utilizing vdW-layered ma...
Back to Newsroom