-

Mitsubishi Electric to Ship Samples of HV100 Dual-type X-Series HVIGBT Module

For extra powerful and efficient inverter systems used in railways, electric power systems and more

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it will begin shipping samples of a new HV100 dual-type X-Series high-voltage insulated gate bipolar transistor (HVIGBT) module on May 31, offering superior power, efficiency and reliability in inverter systems for large industrial equipment such as railways and electric power systems. The dual-type module, which achieves 4.5kV withstand voltage and 10.2kVrms dielectric strength, is rated at 450A, which is believed to be unmatched among 4.5kV silicon HVIGBT modules. The product will be exhibited at major trade shows, including Power Conversion Intelligent Motion (PCIM) Europe 2023 in Nuremberg, Germany from May 9 to 11.

Power semiconductors are increasingly being utilized to efficiently convert electric power in order to lower the carbon footprint of global society, particularly in heavy industry, where these devices are used in power-conversion equipment such as inverters in railway traction systems and for DC power transmission. In response to the growing demand for devices offering high output, high efficiency and wide ranging output capacity, Mitsubishi Electric released two versions (3.3kV/450A and 3.3kV/600A) of its HV100 dual-type X-Series high-dielectric-strength HVIGBT module in 2021. In the near future, the forthcoming HV100 dual-type X-Series module will contribute to even higher output, higher efficiency and improved system reliability for inverters used in large industrial equipment requiring high dielectric strength.

For the full text, please visit: www.MitsubishiElectric.com/news/

Contacts

Customer Inquiries
Semiconductor & Device Marketing Dept.A and Dept.B
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/semiconductors/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

Mitsubishi Electric Corporation

TOKYO:6503

Release Versions

Contacts

Customer Inquiries
Semiconductor & Device Marketing Dept.A and Dept.B
Mitsubishi Electric Corporation
www.MitsubishiElectric.com/semiconductors/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

More News From Mitsubishi Electric Corporation

Mitsubishi Electric Completes Full Acquisition of Nozomi Networks

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today the completion of its acquisition of all outstanding shares of Nozomi Networks Inc., following the announcement on September 9, 2025 regarding its plan to make Nozomi a wholly-owned subsidiary. Overview of the Subsidiary Being Transferred Name Nozomi Networks Inc. Location Suite 3650, 575 Market St, San Francisco CA 94105 President & CEO Edgard Capdevielle Description of business Development and sales of O...

Mitsubishi Electric’s ME Innovation Fund Invests in Lucend, U.S. Startup Driving Data Center Operational Optimization

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that its ME Innovation Fund has invested in Lucend, a U.S.-based startup that provides an AI platform to optimize data center operations. This is the fund’s fourteenth investment to date. The rapid advancement of digitalization, including the widespread adoption of generative AI, has accelerated capital investment in data centers worldwide. Meanwhile, data center operators are being increasingly required to en...

Mitsubishi Electric Confirms World’s First Self-recovery Property of Highly Oriented Pyrolytic Graphite

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it has confirmed the world’s first self-recovery property of highly oriented pyrolytic graphite (HOPG), a van der Waals (vdW)-layered material, in joint research with the Solid Mechanics Laboratory (Hirakata Laboratory) of Kyoto University's Graduate School of Engineering. This achievement is expected to extend the operational lifetime of micro electro mechanical systems (MEMS) by utilizing vdW-layered ma...
Back to Newsroom