-

Elastic Announces Faster Filtered Vector Search with ACORN-1 and Default Better Binary Quantization Compression

New capabilities deliver up to 5X faster filtered vector search, improved ranking quality, and lower infrastructure costs to unlock scalable, cost-efficient AI applications

SAN FRANCISCO--(BUSINESS WIRE)--Elastic (NYSE: ESTC), the Search AI Company, announced new performance and cost-efficiency breakthroughs with two significant enhancements to its vector search. Users now benefit from ACORN, a smart filtering algorithm, in addition to Better Binary Quantization (BBQ) as the default for high-dimensional dense vectors. These capabilities improve both query performance and ranking quality, providing developers with new tools to build scalable, high-performance AI applications while lowering infrastructure costs.

“We’re committed to giving developers the best tools to build and iterate AI applications at scale,” said Ajay Nair, general manager, Platform at Elastic. “ACORN for filtered vector queries and default Better Binary Quantization represent a step-change in performance and efficiency. This enables our users to execute complex, high-speed, filtered queries at low latency with a dramatic memory reduction, all while maintaining high ranking quality.”

Smarter, Faster Filtered Search with ACORN

ACORN-1 is a new algorithm for filtered k-Nearest Neighbor (kNN) search in Elasticsearch. It tightly integrates filtering into the traversal of the HNSW graph, the core of Elasticsearch’s approximate nearest neighbor search engine. Unlike traditional approaches that apply filters post-search or require pre-indexing, ACORN enables flexible filter definition at query time, even after documents have been ingested.

In real-world filtered vector search benchmarks, ACORN delivers up to 5X speedups, improving latency without compromising result accuracy.

Improved Ranking with BBQ by Default

Better Binary Quantization (BBQ) is now the default quantization method for dense vectors of 384+ dimensions in Elasticsearch 9.1. This change boosts ranking quality while slashing latency and resource usage.

When benchmarked across 10 industry-standard BEIR datasets, BBQ outperformed traditional float32-based search in 9 out of 10 cases, using the NDCG@10 (Normalized Discounted Cumulative Gain at 10) metric for top-10 ranking accuracy. BBQ achieves this through a combination of aggressive compression (~32X) and evaluation of more candidates during search.

For details on how to get started with ACORN and BBQ by default in Elasticsearch 9.1, read the Elastic blog.

For more information:

About Elastic

Elastic (NYSE: ESTC), the Search AI Company, integrates its deep expertise in search technology with artificial intelligence to help everyone transform all of their data into answers, actions, and outcomes. Elastic's Search AI Platform — the foundation for its search, observability, and security solutions — is used by thousands of companies, including more than 50% of the Fortune 500. Learn more at elastic.co.

Elastic and associated marks are trademarks or registered trademarks of Elasticsearch BV and its subsidiaries. All other company and product names may be trademarks of their respective owners.

Contacts

Media Contact
Elastic PR
PR-team@elastic.co

Elastic N.V.

NYSE:ESTC

Release Versions

Contacts

Media Contact
Elastic PR
PR-team@elastic.co

More News From Elastic N.V.

Elastic Delivers GPU Infrastructure to Self-Managed Elasticsearch Customers via Cloud Connect

SAN FRANCISCO--(BUSINESS WIRE)--Elastic (NYSE: ESTC), the Search AI Company, announced the availability of Elastic Inference Service (EIS) via Cloud Connect for self-managed Elasticsearch deployments. Organizations can now gain on-demand access to cloud-hosted inference capabilities without managing GPU infrastructure, all while maintaining their core infrastructure and data on-premises. Users also gain immediate access to models by Jina.ai, an Elastic company and a leader in open-source multil...

Elastic Adds High-Precision Multilingual Reranking to Elastic Inference Service with Jina Models

SAN FRANCISCO--(BUSINESS WIRE)--Elastic (NYSE: ESTC), the Search AI Company, today made two Jina Rerankers available on Elastic Inference Service (EIS), a GPU-accelerated inference-as-a-service that makes it easy to run fast, high-quality inference without complex setup or hosting. These rerankers bring low-latency, high-precision multilingual reranking to the Elastic ecosystem. As generative AI prototypes move into production-ready search and RAG systems, users run into relevance and inference...

Elastic Announces General Availability of Agent Builder with Expanded Capabilities

SAN FRANCISCO--(BUSINESS WIRE)--Elastic (NYSE: ESTC), the Search AI Company, announced the general availability of Agent Builder, a complete set of capabilities that helps developers quickly build secure, reliable, context-driven AI agents. AI agents need the right context to perform complex tasks accurately. Built on Elasticsearch, Agent Builder excels at context engineering by delivering relevance in a unified platform that scales, searches, and analyzes enterprise data. It dramatically simpl...
Back to Newsroom