-

How artificial intelligence can transform U.S. energy infrastructure with a new report from Argonne and partners

LEMONT, Ill.--(BUSINESS WIRE)--In the face of accelerating climate change, the U.S. aims to reduce the net carbon emissions of its economy to zero by 2050. Achieving this goal will require an unprecedented deployment of clean energy technologies. And a significant transformation of the nation’s energy infrastructure.

It is an exceptionally complex and daunting challenge. But it is not impossible if we harness the transformative capabilities of artificial intelligence (AI) to help.

This is according to a groundbreaking new report issued by leading energy researchers and scientists from across America’s national laboratories. The report is titled AI for Energy. It provides a bold framework for how the U.S. Department of Energy (DOE) can use AI to accelerate the nation’s clean energy transformation.

“AI can manage complexity and make connections across multiple scientific and engineering disciplines, multiple model and data types, and multiple outcome priorities. This can enable AI to create solutions for the ​‘grand challenges’ of massive and rapid clean energy deployment that conventional methods cannot,” said Rick Stevens, associate laboratory director for the Computing, Environment and Life Sciences directorate at DOE’s Argonne National Laboratory.

The report identifies grand challenges across five areas of the U.S. energy infrastructure. These include nuclear power, the power grid, carbon management, energy storage and energy materials. Three common needs emerged across these challenges. The first is the need for quick and highly reliable computer-aided design and testing of materials and systems. The second is the need to improve scientists’ ability to pinpoint uncertainties in their predictions and how systems will perform. The third is the need for AI to integrate data from multiple sources and formats.

If the U.S. can overcome these challenges, the benefits could be significant.

“AI has the potential to reduce the cost to design, license, deploy, operate and maintain energy infrastructure by hundreds of billions of dollars,” said Kirsten Laurin-Kovitz, associate laboratory director for the Nuclear Technologies and National Security directorate at Argonne. ​“It can also accelerate design, deployment and licensing processes. These can account for up to 50% of the time it takes a new technology to get to the marketplace.”

“Argonne is grateful for the opportunity to leverage its expertise in helping drive the AI for Energy effort,” said Claus Daniel, associate laboratory director for the Advanced Energy Technologies directorate at Argonne. ​“We are excited to help DOE drive U.S. global leadership in clean energy technology. And help DOE achieve its mission to secure U.S. energy independence and security for decades to come.”

You can read the entire AI for Energy report here.

Contacts

Christopher J. Kramer
Head of Media Relations
Argonne National Laboratory
Office: 630.252.5580
Email: media@anl.gov

Argonne National Laboratory


Release Summary
Experts met at Argonne for two days to discuss how to secure America’s energy future and leadership. The AI for Energy report outlines their vision.
Release Versions

Contacts

Christopher J. Kramer
Head of Media Relations
Argonne National Laboratory
Office: 630.252.5580
Email: media@anl.gov

Social Media Profiles
More News From Argonne National Laboratory

Using Ultrabright X-Rays at Argonne to Test Materials for Ultrafast Aircraft

LEMONT, Ill.--(BUSINESS WIRE)--New technology recreates the conditions these materials would have to withstand when flying at five to seven times the speed of sound....

Argonne’s GridFTP Innovation Wins SC25 Test of Time Award

LEMONT, Ill.--(BUSINESS WIRE)--A landmark paper from Argonne scientists is being recognized for transforming how massive datasets move across supercomputing systems....

Argonne-led Q-NEXT Quantum Center Renewed for Five Years

LEMONT, Ill.--(BUSINESS WIRE)--Q-NEXT has received $125 million over five years to build the capabilities for interconnecting quantum technologies over small and large distances....
Back to Newsroom