-

Mitsubishi Electric to Launch ‘CV Series’ of 3D CO2 Laser Processing Systems for Cutting CFRP

The world’s first unique orthogonal structure CO2 laser oscillator will facilitate the mass production of CFRP products

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it will launch on October 18 two new CV Series models of 3D CO2 laser processing systems for cutting carbon fiber reinforced plastics (CFRP), which are lightweight, high strength materials used in automobiles. The new models are equipped with CO2 laser oscillators that integrate the oscillator and amplifier into the same enclosure – a world-first based on the company’s research as of October 14, 2021 – and together with the unique processing head of the CV Series, it helps achieve high-speed and precision processing. This will enable the mass production of CFRP products, so far unavailable using previous processing methods.

In recent years, there have been increased calls in the automobile industry for reductions in CO2 emissions, improved fuel efficiency, and more lightweight materials enabling greater cruising ranges. This is driving the increasing demand for CFRP, which is a relatively new material. On the other hand, CFRP processing using existing technology has had issues such as high operating costs, low productivity and issues with waste treatment. A new processing method was required.

Mitsubishi Electric’s CV Series will overcome these challenges by achieving high productivity and processing quality far superior to existing processing methods helping to facilitate the mass production of CFRP products at a level that was hitherto unachievable. In addition, the new series will help to reduce the environmental burden by such means as a reduction in waste, thereby contributing to the realization of a sustainable society.

For the full text, please visit: www.MitsubishiElectric.com/news/

Contacts

Customer Inquiries
Industrial Automation Machinery Dept.
Industrial Automation Machinery Marketing Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-6560
www.MitsubishiElectric.com/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

Mitsubishi Electric Corporation

TOKYO:6503

Release Versions

Contacts

Customer Inquiries
Industrial Automation Machinery Dept.
Industrial Automation Machinery Marketing Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-6560
www.MitsubishiElectric.com/

Media Inquiries
Takeyoshi Komatsu
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-2346
prd.gnews@nk.MitsubishiElectric.co.jp
www.MitsubishiElectric.com/news/

More News From Mitsubishi Electric Corporation

Mitsubishi Electric to Strengthen Global Human Resources Allocation and Development with Talent Mobility and G-OJT Systems

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it will launch the Talent Mobility System to match employees with jobs in the company’s global group in order to develop, mobilize and engage top talent. It will also revise the Global- On the Job Training (G-OJT) System to provide young employees with deeper overseas work experiences compared to those of conventional overseas temporary-training programs. Mitsubishi Electric, which employs approximately 1...

Mitsubishi Electric to Ship Samples of Four New Trench SiC-MOSFET Bare Dies for Power Semiconductors

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation (TOKYO: 6503) announced today that, beginning January 21, it will start shipping samples of four new trench silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) bare dies (chips not encased in protective housing) designed for use in power electronics equipment, such as electric vehicle (EV) traction inverters, onboard chargers, and power supply systems for renewable energy sources including solar power. These new...

Mechanism of Hydrogen-driven Free-electron Generation in Silicon Elucidated for First Time Ever

TOKYO--(BUSINESS WIRE)--Mitsubishi Electric Corporation, Institute of Science Tokyo, University of Tsukuba, and Quemix Corporation announced today that they have achieved the world’s first elucidation of how hydrogen produces free electrons through the interaction with certain defects in silicon. The achievement has the potential to improve how insulated gate bipolar transistors (IGBTs) are designed and manufactured, making them more efficient and reducing their power loss. It is also expected...
Back to Newsroom